Search results for "Fréchet algebra"

showing 6 items of 6 documents

On the symbol homomorphism of a certain Frechet algebra of singular integral operators

1985

We prove the surjectivity of the symbol map of the Frechet algebra obtained by completing an algebra of convolution and multiplication operators in the topology generated by all L2-Sobolev norms. The proof is based on an ℝn of Egorov's theorem valid for non-homogeneous principal symbols, discussed in [5], [6]. We use the hyperbolic equation ∂u/∂t=i|D|ηu, 0<η<1, which has its characteristic flow constant at infinity, so that no differentiability of the symbol is required there.

Discrete mathematicsAlgebra and Number TheoryFlow (mathematics)HomomorphismDifferentiable functionFréchet algebraConstant (mathematics)Symbol (formal)Hyperbolic partial differential equationAnalysisConvolutionMathematicsIntegral Equations and Operator Theory
researchProduct

Invariance spectrale des algèbres d'opérateurs pseudodifférentiels

2002

We construct and study several algebras of pseudodifferential operators that are closed under holomorphic functional calculus. This leads to a better understanding of the structure of inverses of elliptic pseudodifferential operators on certain non-compact manifolds. It also leads to decay properties for the solutions of these operators. To cite this article: R. Lauter et al., C. R. Acad. Sci. Paris, Ser. I 334 (2002) 1095–1099.

AlgebraOperator algebraBanach algebraFredholm operatorHolomorphic functional calculusHolomorphic functionGeneral MedicineOperator theoryFréchet algebraDifferential operatorMathematicsComptes Rendus Mathematique
researchProduct

Relative Inversion in der St�rungstheorie von Operatoren und ?-Algebren

1984

Pure mathematicsTopological algebraPseudodifferential operatorsGeneral MathematicsHomogeneous spacePerturbation theoryFréchet algebraMathematicsMathematische Annalen
researchProduct

A Riemann manifold structure of the spectra of weighted algebras of holomorphic functions

2009

[EN] In this paper we give general conditions on a countable family V of weights on an unbounded open set U in a complex Banach space X such that the weighted space HV (U) of holomorphic functions on U has a Frechet algebra structure. For such weights it is shown that the spectrum of HV(U) has a natural analytic manifold structure when X is a symmetrically regular Banach space, and in particular when X = C-n. (C) 2009 Elsevier Ltd. All rights reserved.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsFréchet algebraWeighted space of holomorphic functionsHolomorphic functional calculusInfinite-dimensional vector functionSpectrum (functional analysis)Holomorphic functionFrechet algebraBanach manifoldAnalytic manifold structureAnalytic manifoldBergman spaceSymmetrically regular Banach spaceGeometry and TopologyMATEMATICA APLICADAWeighted spaceMathematicsTopology
researchProduct

The Spectrum of Analytic Mappings of Bounded Type

2000

Abstract A Banach space E is said to be (symmetrically) regular if every continuous (symmetric) linear mapping from E to E ′ is weakly compact. For a complex Banach space E and a complex Banach algebra F , let H b ( E ,  F ) denote the algebra of holomorphic mappings from E to F which are bounded on bounded sets. We endow H b ( E ,  F ) with the usual Frechet topology. M ( H b ( E ,  F ),  F ) denotes the set of all non-null continuous homomorphisms from H b ( E ,  F ) to F . A subset of G EF on which the extension of Zalduendo is multiplicative is presented and it is shown that, in general, the sets G EF and M ( H b ( E ,  F ),  F ) do not coincide. We prove that if E is symmetrically regu…

Discrete mathematicsANÁLISE FUNCIONALhomomorphismApplied MathematicsSpectrum (functional analysis)Multiplicative functionBanach spaceholomorphic mappinganalytic structureBounded typeContinuous linear operatorBounded functionBanach algebraFréchet algebraBanach *-algebraAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Some Nonlinear Methods in Fréchet Operator Rings and Ψ*-Algebras

1995

Two different inverse function theorems, one of Nash-Moser type, the other due to H. Omori, are extended to obtain special surjectivity results in locally convex and locally pseudo-convex Frechet algebras generated by group actions and derivations. In particular, the following factorization problem is discussed. Let Ψ be a locally pseudo-convex Frechet algebra with unit e and T+ : Ψ Ψ a continuous linear operator. Does there exist a neighborhood U of 0 such that the equation where T- = IΨ- T, has a solution x ∈ Ψ for every y ∈ U?

Discrete mathematicsGroup actionPure mathematicsGeneral MathematicsOperator (physics)Regular polygonInverse functionType (model theory)Fréchet algebraUnit (ring theory)Continuous linear operatorMathematicsMathematische Nachrichten
researchProduct